Charge transfer excitations from particle-particle random phase approximation-Opportunities and challenges arising from two-electron deficient systems.

نویسندگان

  • Yang Yang
  • Adriel Dominguez
  • Du Zhang
  • Vitalij Lutsker
  • Thomas A Niehaus
  • Thomas Frauenheim
  • Weitao Yang
چکیده

The particle-particle random phase approximation (pp-RPA) is a promising method for studying charge transfer(CT) excitations. Through a detailed analysis on two-electron deficient systems, we show that the pp-RPA is always able to recover the long-distance asymptotic -1/R trend for CT excitations as a result of the concerted effect between orbital energies and the pp-RPA kernel. We also provide quantitative results for systems with relatively short donor-acceptor distances. With conventional hybrid or range-separated functionals, the pp-RPA performs much better than time-dependent density functional theory (TDDFT), although it still gives underestimated results which are not as good as TDDFT with system-dependent tuned functionals. For pp-RPA, there remain three great challenges in dealing with CT excitations. First, the delocalized frontier orbitals in strongly correlated systems often lead to difficulty with self-consistent field convergence as well as an incorrect picture with about half an electron transferred. Second, the commonly used density functionals often underestimate the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (LUMO) for the two-electron deficient species, resulting in systems with delocalized orbitals. Third, the performance of pp-RPA greatly depends on the energy difference between the LUMO and a higher virtual orbital. However, the meaning of the orbital energies for higher virtual orbitals is still not clear. We also discuss the performance of an approximate pp-RPA scheme that uses density functional tight binding (pp-DFTB) as reference and demonstrate that the aforementioned challenges can be overcome by adopting suitable range-separated hybrid functionals. The pp-RPA and pp-DFTB are thus promising general approaches for describing charge transfer excitations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation.

Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle ran...

متن کامل

Singlet-triplet energy gaps for diradicals from particle-particle random phase approximation.

The particle-particle random phase approximation (pp-RPA) for calculating excitation energies has been applied to diradical systems. With pp-RPA, the two nonbonding electrons are treated in a subspace configuration interaction fashion while the remaining part is described by density functional theory (DFT). The vertical or adiabatic singlet-triplet energy gaps for a variety of categories of dir...

متن کامل

Collective Excitations in Realistic Quantum Wires

We have used the Hartree-Fock Random Phase Approximation (HFRPA) to study the interacting electron gas in a quantum wire. The spectra of intersubband spin-flip excitations reveal a considerable red shift with respect to single-particle HF energies. That signals on appearance of collective intersubband spind-density excitations due to the exchange interaction. The long wavelength dispersions of ...

متن کامل

Faddeev Random Phase Approximation for molecules

Abstract The Faddeev Random Phase Approximation is a Green’s function technique that makes use of Faddeev-equations to couple the motion of a single electron to the two-particle–one-hole and two-hole–one-particle excitations. This method goes beyond the frequently used third-order Algebraic Diagrammatic Construction method: all diagrams involving the exchange of phonons in the particle-hole and...

متن کامل

Excitation energies from particle-particle random phase approximation: Davidson algorithm and benchmark studies.

The particle-particle random phase approximation (pp-RPA) has been used to investigate excitation problems in our recent paper [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. It has been shown to be capable of describing double, Rydberg, and charge transfer excitations, which are challenging for conventional time-dependent density functional theory (TDDFT). However, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 146 12  شماره 

صفحات  -

تاریخ انتشار 2017